skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Shagnik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A strong blocking set in a finite projective space is a set of points that intersects each hyperplane in a spanning set. We provide a new graph theoretic construction of such sets: combining constant-degree expanders with asymptotically good codes, we explicitly construct strong blocking sets in the (k−1)-dimensional projective space over F_q that have size at most cqk for some universal constant c. Since strong blocking sets have recently been shown to be equivalent to minimal linear codes, our construction gives the first explicit construction of F_q-linear minimal codes of length n and dimension k, for every prime power q, for which n ≤ cqk. This solves one of the main open problems on minimal codes. 
    more » « less